If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-48+29=0
We add all the numbers together, and all the variables
a^2-19=0
a = 1; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·1·(-19)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{19}}{2*1}=\frac{0-2\sqrt{19}}{2} =-\frac{2\sqrt{19}}{2} =-\sqrt{19} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{19}}{2*1}=\frac{0+2\sqrt{19}}{2} =\frac{2\sqrt{19}}{2} =\sqrt{19} $
| 5m-2(m+2)=-(2m+30) | | 13s-s=13 | | 8/5=7/v | | 5/8x-3/8x=5 | | -9/14d=3/7 | | .6x=9.6 | | 3/7=-9/14d | | 15x+22=42 | | 1/n+2/n+3n=1 | | a+16/7=22 | | 2/3=1.2/n | | 3/7m=-6/7 | | 7×+2y=247 | | (3x-10)+(110-x)+(2x)=180 | | 12u=48 | | 3y+2y=7y | | -5x-22=-x+18 | | 10x+14=6x+6 | | (3x-10)(110-x)=90 | | 5(c+30)=36 | | 4x+3(2x+5)=50 | | 4(3x+1)+5x=21 | | -4(-5+3y)+7y+5=0 | | 7y-14+10=3y-12-2 | | 13+b/12=24 | | 4(x+2)+6=-18 | | (3x-10)+(110-x)=90 | | 2x+2(x-4)=40 | | 52+x=520 | | 4^x+4=5^2x*5 | | 8x^2+74x+18=0 | | 0.75x=0.666666 |